3,470 research outputs found

    Comparison of Analog R-F Photonic Links Using a Variety of Linearized Electro-Optic Modulators

    Get PDF
    The potential applications of high dynamic range analog r-f photonic links include antenna remoting, photonic-coupled phased-array antennas, and cable-television transmission. This paper compares the results obtained with a number of different modulator types and link configurations and gives recent experimental results. Further details on the analysis and results for some of the schemes can be found in a review paper that will appear later this year

    Intermodulation distortion in high dynamic range microwave fiber-optic links with linearized modulators

    Get PDF
    Linearization of integrated optic intensity modulators significantly reduces the two-tone intermodulation distortion. The resulting intermodulation distortion produced by these modulators then varies as the input power to the fifth-order link system, the overall intermodulation product is a combination of third-order and higher-order terms. The authors determine the dynamic range of a cascaded microwave network consisting of a preamplifier, a high-dynamic-range fiber-optic link with a highly linear modulator, and a postamplifier. An expression is found that relates the intermodulation power at the output to the relative suppression from the signal level. As an example, a hypothetical 10-GHz low-distortion fiber-optic link that has a dynamic range of 125 dB in a bandwidth of 1 Hz is cascaded with various preamplifiers, and it is shown that the dynamic range of the system is reduced by as much as 20 dB, depending on the third-order intercept of the amplifier

    Distortion in linearized electrooptic modulators

    Get PDF
    Intermodulation and harmonic distortion are calculated for a simple fiber-optic link with a representative set of link parameters and a variety of electrooptic modulators: simple Mach-Zehnder, linearized dual and triple Mach-Zehnder, simple directional coupler (two operating points), and linearized directional coupler with one and two dc electrodes. The resulting dynamic ranges, gains, and noise figures are compared for these modulators. A new definition of dynamic range is proposed to accommodate the more complicated variation of intermodulation with input power exhibited by linearized modulators. The effects of noise bandwidth, preamplifier distortion, and errors in modulator operating conditions are described

    In-medium properties of D-mesons at FAIR

    Get PDF
    We obtain the D-meson spectral density at finite temperature for the conditions of density and temperature expected at FAIR. We perform a self-consistent coupled-channel calculation taking, as a bare interaction, a separable potential model. The Λc\Lambda_c (2593) resonance is generated dynamically. We observe that the D-meson spectral density develops a sizeable width while the quasiparticle peak stays close to the free position. The consequences for the D-meson production at FAIR are discussed.Comment: 4 pages, 3 figures, to appear in the proceedings of 9th International Conference on Hypernuclear and Strange Particle Physics (HYP2006), Mainz (Germany), 10-14 October 200

    NORSEX 1979 microwave remote sensing data report

    Get PDF
    Airborne microwave remote sensing measurements obtained by NASA Langley Research Center in support of the 1979 Norwegian Remote Sensing Experiment (NORSEX) are summarized. The objectives of NORSEX were to investigate the capabilities of an active/passive microwave system to measure ice concentration and type in the vicinity of the marginal ice zone near Svalbard, Norway and to apply microwave techniques to the investigation of a thermal oceanic front near Bear Island, Norway. The instruments used during NORSEX include the stepped frequency microwave radiometer, airborne microwave scatterometer, precision radiation thermometer and metric aerial photography. The data are inventoried, summarized, and presented in a user-friendly format. Data summaries are presented as time-history plots which indicate when and where data were obtained as well as the sensor configuration. All data are available on nine-track computer tapes in card-image format upon request to the NASA Langley Technical Library

    Wave-Coupled W-Band LiNbO_3 Mach-Zehnder Modulator

    Get PDF
    Summary form only given. Mach-Zehnder amplitude modulators have been designed for W-band operation (94 GHz), at a 1.3-ÎŒm optical wavelength. These modulators use bow-tie antennas, which are relatively insensitive to DC bias connections made to the ends of the antenna elements. The bow-ties should also give a greater bandwidth than the dipole antennas

    Antenna-coupled millimeter-wave LiNbO_3 electro-optic modulator

    Get PDF
    The phase-velocity mismatch due to material dispersion in traveling-wave LiNbO_3 optical waveguide modulators may be greatly reduced by breaking the modulation transmission line into short segments and connecting each segment to its own surface antenna. The array of antennas is then illuminated by the modulation signal at an angle which produces a delay from antenna to antenna to match the optical waveguide's delay

    60 GHz and 94 GHz antenna-coupled LiNbO_3 electrooptic modulators

    Get PDF
    Antenna-coupled LiBbO_3 electrooptic modulators can overcome the material dispersion which would otherwise prevent sensitive high-frequency operation. The authors previously demonstrated the concept with a phase modulator at X-band. They have extended this demonstration to a narrowband 60-GHz phase modulator and broadband amplitude modulator designs at 60 and 94 GHz, respectively

    Wave-coupled LiNbO_3 electrooptic modulator for microwave and millimeter-wave modulation

    Get PDF
    A new technique of phase velocity matching in electrooptic modulators was demonstrated. The results show that the phase velocity mismatch due to material dispersion in traveling-wave LiNbO_3 optical waveguide modulators can be greatly reduced by breaking the modulation transmission line into short segments and connecting each segment to its own surface dipole antenna. The array of antennas is then illuminated by the modulation signal from below at the proper angle to produce a delay from antenna to antenna that matches the optical waveguide's delay. A phase modulator 25 mm in length with five antennas and five transmission line segments was operated from 4.6 to 13 GHz with a maximum phase modulation sensitivity of over 100°/W^(1/2)
    • 

    corecore